

AFRICA'S MOST INFLUENTIAL POWER, ENERGY AND WATER CONFERENCE AND EXHIBITION

CONNECT. INSPIRE. EVOLVE.

www.enlit-africa.com

Megger. SIEMENS

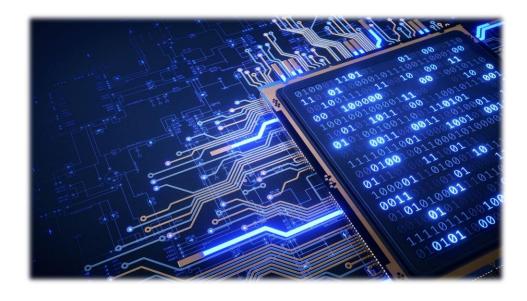
Closed-loop relay testing with digital twins opens the door for relay engineers

Niclas Wetterstrand Global Industry Director – Protection Megger Sweden

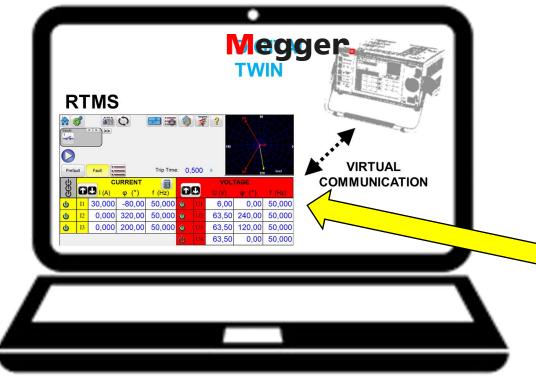
Thabang Pitso Smart Infrastructure Engineering Siemens South Africa

Digital twin definition

- Virtual representation of physical device or process
- Synchronized at a specified frequency and fidelity
 - Real-time and historical data
 - Represent the past and present
 - Simulate predicted futures
- Key elements
 - Share the same data
 - Get the same behaviour

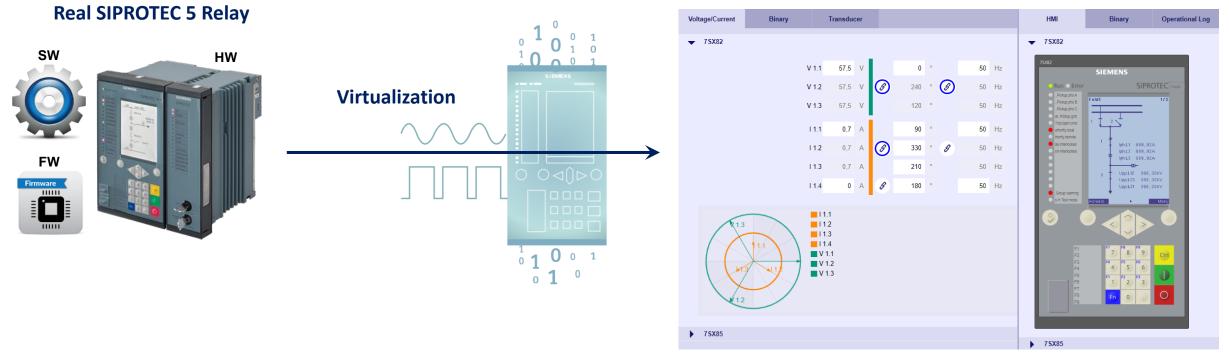


Functional digital twins – High fidelity simulation only by OEM's


- Other simulations in the power industry
 - IEC 61850 SCL Model simulators
 - IEC 61850 Simulation of GOOSE and SV
 - Real time power system simulators
- Functional digital twins made by OEM
 - Shared software with physical device
 - Same settings and algorithms
 - Internal hardware processes are simulated
 - Digital twin functionally type tested

High fidelity simulation only by OEM's

The Megger Digital Twin is a digital replica of a real relay test set with identical behaviour and characteristics



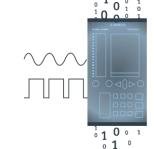
Test set software (RTMS) contains the test to be performed. It connects to the FREJA 546 Digital Twin test set (in this example)

- Same user interface as conventional testing the DT test set connects through a virtual Ethernet connection
- The entire real test set is virtualized: FW, algorithms, hardware and software configurations, parameters,...

The SIPROTEC DigitalTwin is a digital replica of a real protection relay with identical behavior and characteristics SIPROTEC DigitalTwin

- The virtualization process is quick and easy (less than a minute) and requires no additional engineering effort
- The entire real relay is virtualized: FW, algorithms, hardware and software configurations, CFC logics, parameters,...

SIPROTEC DigitalTwin – Features and functionalities


SIPROTEC DigitalTwin local control panel (HMI) operates in the same way as the real relay.

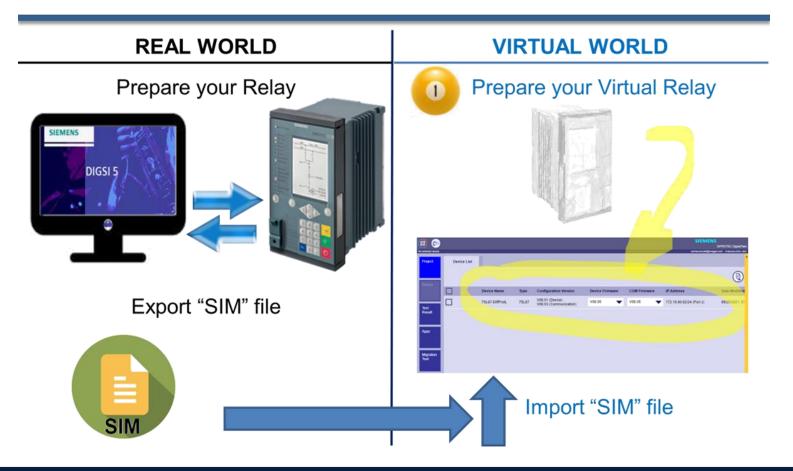
Primary devices (Circuit breakers, disconnectors and OLTC) are simulated by SIPROTEC DigitalTwin

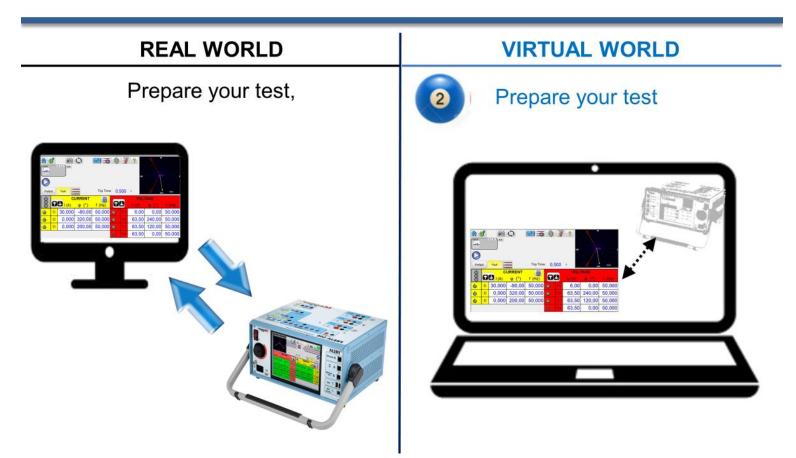
In terms of communication, DigitalTwin behaves exactly like the real relay (no difference seen from the communication partner). Supported protocols:

- IEC 61850 (Goose, SV, MMS)
- IEC 60870-5-104 Ο
- DIGSI 5, Web browser, Differential **Protection Interface**
- Modbus TCP, Profinet

Interaction with the DigitalTwin through a simulation environment allowing:

- Binary Input forcing
- Current / Voltage injection
- COMTRADE file and test sequence replay
- Virtual binary I/O wiring




SIPROTEC DigitalTwin – Virtualized Control and Protection Test platform

REAL WORLD	VIRTUAL WORLD			
Connect relay to the test set	MAP the test signals to virtual analog inputs of the relay			
	Device List Routing Matrix Test Files Type: Current Source: Fault Zone1 FW Output (Source) \ Input (Destination) 1.1 1.2 1.3 1.4 SMRTVT-C1 A Image: Comparison of the second s			
	SMRTVT-C3 C			

REAL WORLD	VIRTUAL WORLD				
Connect relay to the test set	3 MAP the relay outputs to the virtual binary inputs of the test set				
	Output (Source) \ Input (Destination) 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 BO 1.1 (Trip/open cmd U) Image: Control of the system of the syste				

REAL WORLD	VIRTUAL WORLD		
Run the test	Run the test and ask for "CLOSED LOOP TEST"		
	From the Digital Twin test set		
• n 30,000 -80,00 50,000 60,00 50,000 40,00 50,000 40,000 50,000 40,000 50,000 40,000 50,000 40,000 50,000 40,000 50,000 40,000 50,000 40,000 50,000 40,000 50,000 40,000 50,000 40,000 50,000 40,000 50,000 40,000	(OPEN LOOP) Don't Save COMTRADE		
	(OPEN LOOP) Save COMTRADE Without Viewing known		
	(OPEN LOOP) Save COMTRADE and View With RTMS COMTRADE Viewer		
	(CLOSE LOOP) Run Tests With Relay Digital Twin		

REAL WORLD	VIRTUAL WORLD		
Assess the test results	5 Assess the test results from the virtual test set $Fault Type = L1+L2-L3 \qquad Z = 13,33@280,00 \\ U = 40,00@0,00 \\ U = 3,00@00,00 \\ U = 3,00@00,00 \\ U = 0,00@0,00 \\ U = 0,00@0,00 \\ U = 0,00@0,00 \\ U = 0,000 \\ U $		
Additionally From the relay data (Event Recorder, HMI, Disturbance Recorder)	Additionally From the relay data (Event Recorder, HMI, Disturbance Recorder)		

REAL WORLD

Get report from the software.

5

Get report from the software.

VIRTUAL WORLD

HOME	TOOLS H	<u>.</u>		PT Ratio	00000	0 V : 100 V	* 511
2al Num							
y Firm	ware			Rotation	Count	er Clockwise Rotation	0-360 Lead
Ξ7			Timing	Test - Z1 FW -	0 ms		2024-02-26 16:01
Prefault	Time(s)	Max Test Time (s)	Expected	Minimum Value(ms)	Maximum Value(ms)	Measured(ms)	✓/x
5,0	00	0,100	0,000	0,000	50,000	8,000	~
		-	Prefault			Faut	
Char	snel	Magnitude	00	f (Hz)	Magnitude	00	f (Hz)
Current	L1E	0.0000 A	0.00 *	50.00 Hz	4,0000 A	-80.00	50.00 H
Current	L2E	0.0000 A	240.00 *	50.00 Hz	4,0000 A	160.00 *	50.00 H
Current	L3E	A 0000.0	120,00 *	50,00 Hz	4,0000 A	40,00	50,00 H
Voltage	L1E	57,000 V	0,00 *	50,00 Hz	20,000 V	0,00 *	50,00 H
Voltage	L2E	57,000 V	240,00 *	50,00 Hz	20,000 V	240,00 *	50,00 F
Voltage	L3E	57,000 V	120,00 *	50,00 Hz	20,000 V	120,00 *	50,00 1
Ξ7			Timing T	est - Z2 FW - 4	00 ms		2024-02-26 16:01
Prefault	Time(s)	Max Test Time (s)	Expected	Minimum Value(ms)	Maximum Value(ms)	Measured(ms)	√ /x
5,0	00	0,500	400,0	400,0	450,0	409,0	~
Cher	and a	<u> </u>	Prefault		Faut		
Una		Magnitude	Ø (*)	f (Hz)	Magnitude	0()	f (Hz)
Current	L1E	A 0000,0	0,00 *	50,00 Hz	3,0000 A	-80,00 *	50,00 1
Current	L2E	0,0000 A	240,00	50,00 Hz	3,0000 A	160,00 *	50,00 H
Current	L3E	A 0000,0	120,00 *	50,00 Hz	3,0000 A	40,00 *	50,00 H
Voltage	L1E	57,000 V	0,00 *	50,00 Hz	40,000 V	0,00 *	50,00 F
Voltage	L2E	57,000 V	240,00 *	50,00 Hz	40,000 V	240,00 *	50,00 1
Voltage	L3E	57,000 V	120.00 *	50.00 Hz	40.000 V	120.00 *	50.00 H

Dal Nurr	nber			PT Ratio	220000	V:100 V	
y Firm	ware			Rotation	Counte	or Clockwise Rotation 0-	
= 7			Timing	Test - Z1 FW -	0 ms		2024-02-26 16:01
Prefault	Time(s)	Max Test Time (s)	Expected	Minimum Value(ms)	Maximum Value(ms)	Measured(ms)	✔/X
5,0	00	0,100	0,000	0,000	50,000	8,000	~
		-	Prefault			Faut	
Char	nnel	Magnitude	00	f (Hz)	Magnitude	0()	f (Hz)
Current	L1E	A 0000.0	0.00 *	50,00 Hz	4,0000 A	-80,00 *	50,00 H
Current	L2E	A 0000,0	240,00 *	50,00 Hz	4,0000 A	160,00 *	50,00 H
Current	L3E	0,0000 A	120,00 *	50,00 Hz	4,0000 A	40,00 *	50,00
Voitage	L1E	57,000 V	0,00 *	50,00 Hz	20,000 V	0,00 *	50,00 H
Votage	L2E	57,000 V	240,00 *	50,00 Hz	20,000 V	240,00 *	50,00 1
Voltage	L3E	57,000 V	120,00 *	50,00 Hz	20,000 V	120,00 *	50,00 H
= 7			Timing 1	est - Z2 FW - 4	00 ms		2024-02-26 16:01
Prefault	Time(s)	Max Test Time (s)	Expected	Minimum Value(ms)	Maximum Value(ms)	Measured(ms)	✓/×
5,0	00	0,500	400,0	400,0	450,0	409,0	~
Che			Prefault			Faut	
Cha	nnei	Magnitude	0()	f (Hz)	Magnitude	0()	f (Hz)
Current	L1E	0.0000 A	0.00 *	50,00 Hz	3,0000 A	-80,00 *	50,00 1
Current	L2E	A 0000,0	240,00 *	50,00 Hz	3,0000 A	160,00 *	50,00 H
Current	L3E	A 0000,0	120,00 *	50,00 Hz	3,0000 A	40,00 *	50,00 H
Voltage	L1E	57,000 V	0,00 *	50,00 Hz	40,000 V	0,00 *	50,00 H
Votage Votage	L2E	57,000 V	240.00	50,00 Hz	40,000 V	240.00	50,00 1
	L3E	57.000 V	120.00 *	50.00 Hz	40.000 V	120.00 *	50.00

R	EAL WORLD	VIRTUAL WORLD		
Save t	the tests, repeat them…	Save th	e tests, repeat th	em
Test Groups: SIEME	NS DIGITAL TWIN - 7SA86 Tests: Timing Test - Z1 FW - 0 ms Timing Test - Z2 FW - 400 ms Timing Test - Z3 FW - 800 ms Timing Test - Z4 RV - 1000 ms	Test Groups:	DIGITAL TWIN - 7SA86 Tests: Timing Test - Z1 FW - 0 ms Timing Test - Z2 FW - 400 ms Timing Test - Z3 FW - 800 ms Timing Test - Z4 RV - 1000 ms	
2				
	Green: Pass; Red: Fail; Black: Not Tested; Blue: Incomplete		en: Pass; Red: Fail; Black: Not Tested; Blue: Inco	mplete E

www.enlit-africa.com

The digital twins has the same roles as in reality

DT TEST SET responsibility

- Generate the test quantities Voltages currents, binary signals.
- Provide test methods pseudo-continuous ramps, ramps of shots, sequences of shots, standardized according to IEC 60255-1xx series or not.
- Measure the relay response from relay binary outputs, provide test reports, handle test files, repeat tests etc.

DT RELAY responsibility

- Measure the test quantities that simulate different power system conditions
- Take protection decision, operation or not, based on the protection algorithms
- Report the relay behaviour Information on local HMI, Disturbance recorder, event recorder, etc.

Use cases and benefits

Use case A: Virtual FAT

- Virtual devices Logistics, temporary installation, panel production, additional hardware and temporary wirings avoided
- Remote and parallel work No travel => CO2 emissions, available experts, convenience, increased speed => meet delivery time

Use case B: Training

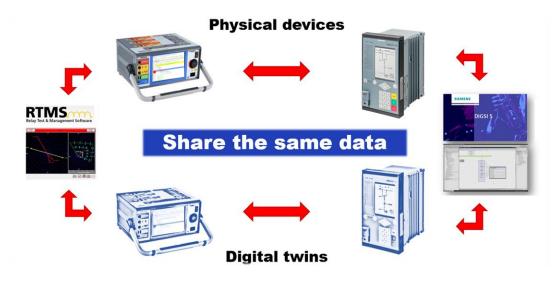
• Safety, availability, cost reduction, familiar environment.

Use case C: Remote support

• Enable quick solutions, convenient

Benefits

- Test files and settings files are reused in reality
- Verified settings files and test files will work
- Environment familiar
 - Gives confidence in troubleshooting
- Repeat a subset of the tests at commissioning
 - Verify connections, hardware and correct settings file



Less stress in a project phase with high time pressure

Conclusion

- Functional digital twins working together gives benefits
 - Cost saving
 - Time saving
 - Trained staff
 - Safety
- High fidelity digital twins from OEMs
 - Accurate functional simulation
 - Performance confirmed virtual
 - A few prepared tests repeated in reality
- Closed loop testing
 - Two digital twins interacting
 - The digital twins has same role as in reality
 - Makes digital twins available to 'regular' users

- Coming steps
 - Sequencer tests in closed-loop testing
 - Standardization